Archive | Reflections RSS for this section

Some thoughts on “You Got This Because You’re A Girl”

I want to send a huge thank you to Shreya Shankar, a CS student at Stanford, for putting together a really well-written blog post about one of the ways in which being a woman in tech is a strange and sometimes isolating experience. In this article, Shreya talks about the complex feelings associated with being hired into a diversity program. There’s the resentment and blame cast on you by your male peers. The feelings of self-doubt about your qualifications. A little guilt, maybe you aren’t even sure about your level of passion for engineering. The annoying voice that creeps into your head when you introduce yourself as an engineer – the one that says “they are looking at you right now and casting you as the token diversity hire who doesn’t know what she’s doing.”

Shreya, I felt all of this and more when I was an engineering student. After my sophomore year in 1994, I applied for an internship at AT&T. It was a diversity program specifically geared toward women and minorities in tech. I spent the summer writing Unix shell scripts to run the system backups, and plugging tapes into drives to test the backup system. AT&T, at the time, ran a really good summer program. We attended lunch talks with speakers who talked about everything from negotiations between men and women to AT&T’s outreach to the gay and lesbian community. We went on outings to theme parks and restaurants to get to know each other better. It was the first time I’d ever worked with such a diverse group of young people and I learned so much beyond the technical skills. My older co-workers said they liked the backup scripts I wrote and would continue to use them. I thought it was a successful summer.

The following year, I applied for, and got, a second internship with Hewlett-Packard. I was over the moon excited, because I’d get to move to Colorado for the internship and HP was going to pay me a moving allowance. HP’s program wasn’t exclusive to women and minorities, but diverse hires were a priority and we all knew it. I was going to write a configuration utility for some test and measurement equipment. It would be a great adventure working for a really cool company and I was stoked.

I ran into one of my friends on campus one spring day before the end of the semester – and I’ll never forget the conversation we had. I asked him about his plans for the summer and he said he would probably be going back home to work for his dad because he didn’t get an internship. I said Oh. He had already heard about my opportunity through mutual friends. He had no cheerful words for me. He pointed out that he had a 4.0 grade point average, and I only had a 3.6 and we were both involved in a lot of activities and then he practically spit out the words when he said “And I don’t have a summer internship and the only reason you have one and I don’t is BECAUSE YOU’RE A GIRL.”

It stung! It stung then and those words stayed with me and they STILL sting. We’ve stayed in touch from time to time and I’ve never brought up that conversation again. He did get a nice job at a big tech company later and has done well for himself, so whatever happened that summer didn’t ruin his life. I assume he was upset and angry and it made him feel better to bring me down a notch. I’m sure he was resentful that a student he perceived as less qualified got an internship he wanted. That awkward moment was terrible and I don’t even remember how I ended the conversation. I knew at that moment he was angry and I just wanted to get away.

And Shreya, and any other women out there who have had those moments, I want to give you some perspective as someone who did end up in a good career as an engineer and somewhat successfully finished that gauntlet. (I did change careers after a decade; I’m now a schoolteacher. I have no regrets about either career.)

  • You can really enjoy being an engineer if you work for a good company with a good support system and culture. In my careers at AT&T and Hewlett Packard in the 1990’s, they did a lot of things right. The leadership was committed to making the workplace welcoming for everyone. They held lunch talks and events geared toward bringing out diverse voices and problem-solving together. They created a culture that welcomed different, even opposing, perspectives. They had employee groups that helped you network with other people with the same background. They believed in listening. Watch for this when you apply for, and accept, a job. Ask questions of your interviewer about the company’s support of diversity. If you get a chance to shadow an employee for a day or take an internship, do it and keep your antenna up. Don’t be afraid to change course even after you’ve accepted a job. There’s no reason to work for a company that makes you feel like you’re not respected or heard. There are plenty of good workplaces out there.
  • People who seem less qualified on paper get opportunities over “more qualified” people ALL THE TIME. Sometimes it’s because the people interviewing perceive a good fit in something that’s harder to measure. The new hire has a great temperament. The new hire has networked well and has a contact that can vouch for them. The new hire has a skill in an area the company really wants. If this new hire is a white man, nobody will ever complain that they’re less qualified and they only got hired as a token diversity hire. Resentment comes out differently when the new hire is a woman or minority, and it’s an uncomfortable truth. You don’t have to do anything to justify your presence to others who didn’t get the job. You have a great opportunity – just try your best to hold the door open for those who follow you.
  • Understand that companies hire for a “good cultural fit” all the time. When you got hired, the company made a decision that your skills and grades were what they were looking for, and your background and perspective is something they value and they wanted you on board.  You’re a good cultural fit. You’re going to make that workplace even better by being part of it.
  • Seek out mentors who are like you, even if they don’t work in the same company. Talk to them often. It helps if your mentors are in leadership positions – the section manager or vice-president won’t mind one bit if you invite her out to coffee just to talk about how work is going and how you like it, or you want to pick her brain about what it’s like to have a leadership role at a tech company. You might need an advocate later on, so try not to be shy about reaching out to other women. We need each other. I have had some very good mentors who were male as well, but I *needed* my female mentors when I had those moments of insecurity or self doubt. I would not have stayed in tech without them.
  • You’re going to be subjected to sexism or racism from time to time. This is a fact of working in an environment in which you stand out as different. It’s going to happen. If you have plenty of good experiences to fall back on, it builds up your resilient core and the negative experiences don’t bother you as much – but they do happen. This is where having female mentors is so helpful. Process it with them. It’ll give you good perspective. You’ll start to know when to stand up firmly for yourself and when to just let it go and pick your battles.
  • You’re also going to have experiences in which you just aren’t sure of yourself, in which your co-workers aren’t being explicitly sexist, but since you come from different cultures, neither is sure how to act around the other. Lunches, happy hours, golf outings, video game competitions, going to the gym – or work-related gatherings like a debugging session or breakfast meeting or an impromptu teleconference – you might feel like you’re not welcome, and it’s very likely that you are totally welcome, but the men didn’t think to explicitly invite you because they didn’t realize you felt you needed an invitation. Anytime you stand out as different, you tend to sit back and wait for an invitation.  Try not to sit back. Ask “I’d love to attend. Mind if I join you?” Go, make an appearance and use it as an opportunity for everyone to learn.

Lastly, this is an awkward topic to bring up, but I have some pretty good evidence that during my time as an engineer, I was gradually paid less than less-experienced, male coworkers. I only have a couple of pieces of data and a lot of suspicions. But understand a merit-based pay system is not really merit-based. Everybody in your leadership  chain has some discretion, and individual discretion is biased in ways we don’t always see. It would be very reasonable to track down more information in whatever way makes sense for the company you’re in. I never rocked the boat, but I look back and know I should have used the guidance of my female mentors to help me navigate the pay system better.

You matter. The career you’re entering is a good one, full of interesting opportunities, cool problems to solve, people who are smart and creative and fun, and a global workforce and customer base that is very diverse and that your skills will impact positively. It has its challenges but it’s very worthwhile. If you enjoy creative problem-solving, you will like engineering even with its issues. It’s a great field. I look back with awe at how I got to be part of technologies that changed the world without even realizing it at the time. Engineers make history!

That’s me! I got to work with the technical marketing team to train engineers in China on our products, and I loved the global collaboration.

Reach out to me or other women engineers anytime. We have your back!!

 

Advertisements

Common Core Math Needs To Go.

I really believe that a major obstacle in making much-needed changes to public education – making it more personal, relevant, flexible, enjoyable… making it less boring and more likely to build literate, happy, employable and productive members of society… a major obstacle lies in the Common Core Math Standards and everything that causes us to cling to them.

 

I can’t prove these standards are bad for kids’ education. I can’t prove it because we measure the quality of a child’s education by how well they take a test according to these standards, and whether they eventually learn these standards well enough to graduate high school. We don’t tend to measure the quality of a child’s education by metrics that actually matter, but when we do, the measurements aren’t good. The achievement gap persists. Students report increasing boredom and disengagement with school as they proceed through high school. Students that attend college increasingly need remediation. Employers report a dearth of applicants with needed skills for jobs. Surveys of adult science and math literacy are depressing.

 

A thought experiment. If there were no math standards and no curriculum and no textbooks. Nothing. All math books and online curricular resources and all math teachers suddenly went away, and we had to figure out a way to teach children what they needed to be successful, confident, productive, empathetic citizens. What would we do? We had a similar thought experiment in our Education Reimagined cohort, and interestingly, not one of us suggested anything looking like the current state of mathematics learning. We thought of many ways to make mathematics interesting, relevant, creative, personal, even joyful.

 

There are undoubtedly math and numeracy skills that are fundamental for our students to learn. Maybe it would be a good thought experiment to start with the end in mind. What do literate adults need to know about mathematics?

 

What would be on that list? Here is my list. I put stars next to “advanced”, possibly optional, topics. Just an off-the-cuff list of what I am glad to know and what I wish other people understood about math. What are yours?

  • Basic principles of addition / subtraction, especially mental math and estimation
  • Multiplying and dividing, again especially mental math and estimation
  • Doubling and halving mentally
  • Percents and proportions (mental math and back-of-napkin techniques)
  • Ratios and fractions
  • Using technology for all operations above and testing reasonableness of answers
  • Statistics and presentation / organization of data. Estimation, identifying outliers, using technology
  • Making sense of very large/very small numbers and the proportionality of them
  • Scientific notation
  • Formulas – substitution into a formula, and writing your own
  • Spreadsheets, data collection, visualization tools, and spreadsheet formulas
  • Computer programming
  • Logic and puzzles (*?)
  • Personal finance – taxes, loans, interest, saving for goals, budgeting, shopping.
  • Entrepreneurship and running a business. Profit/income/expenses.
  • Strategy, game-playing *
  • Simulation, modeling, making predictions. Taking a real-life situation and modeling it with bare-bones variables, with or without technology. Evaluating a simulation to determine if it’s valid. (*?)
  • Measurement, units and unit conversions. Length, weight, volume, mass, area, speed, time. Making your own units when needed. Using measurements in:  Food prep, sewing, crafting/DIY, gardening, home improvement, public transportation and auto care.
  • Coordinate graphing – plotting points in 1, 2, and 3 dimensional space and making meaning from the graphs – creating your own coordinate axes and using them – xy and xyz. Applied math in 3-D design and automation.
  • Trigonometry – sin,cos,tan and using these in 2D and 3D space for design *

 

I believe most of these skills can be taught in an applied way, relevant for students at whatever age they learn them, in the context of a project or experience. Students that enjoy learning math for the joy of pattern-finding, logic and thinking just for the purpose of improving one’s thinking could certainly dive deeply into theoretical mathematics. But there’s no reason all students would need to learn most theoretical mathematics. I think they could learn to find beauty, joy AND relevance in math and learn numeracy in an applied context.

 

Did I come close to your list? What did yours have on it?

 

For kicks, now go to the Common Core Math Standards website and browse through. This is the essential set of math knowledge experts deem that kids need to master by the end of each grade band. By the end of high school, to be college-and-career-ready, you should have mastered the whole thing. This is the low bar. Is that where you would have put it? Why or why not?

 

I have to tell you I find the high school standards outright discouraging. They are difficult to understand, even for me, a former engineer with a major in Computer Engineering and an almost-minor in mathematics. As a teacher, you have to search the far corners of your brain and your resource library to TRY and find a way to make many of those standards relevant or interesting. Kids don’t retain them after a unit’s over, let alone after a summer or a year or two. They don’t retain the math knowledge because it doesn’t connect to anything in their lives. There’s no purpose for it. Nobody in the “real world” actually interacts with math in the same way we do in a math classroom.  As teachers, we know this about brain-based learning and we teach these stupid standards anyway.

 

Colorado is beginning a review process for all of its content-area standards, including math. I applied to be on the standards review committee, but didn’t make the cut. I started the lengthy process of giving feedback via the online system, but I’m embarrassed to say that around the submission deadline, I ended up swamped with things to do at school and in life, and I never turned in my answers. I did get a chance to talk with a representative from the CDE about the first review meetings, to ask him what kind of changes they were thinking of. Would Colorado keep Common Core?  He indicated that we probably would, but the new standards would be better organized, easier to search and more useful for teachers.

This is ridiculous. They need to be gutted. We need to start over.

Choosing to Repeat a Class

I studied computer engineering in college. I went to school on a 4-year scholarship, so I had 8 semesters to get a degree before the money ran out. This is important because I had to pass every class I took. I couldn’t fail a class or I might lose my scholarship, and if I had to repeat a class that was a prerequisite, I might not graduate on time.

Along the way, I took my first class in circuits, and I got a B. Good enough to pass and move onward to the next class. However, I knew at the time that I was struggling to understand circuits. I did reasonably well on the assessments, but I didn’t really get how an RC or LC circuit worked, or the meaning behind Maxwell’s equations or Gauss’ formula. I could use ratios to calculate the output of a transformer, but I didn’t really understand why they worked. I could answer questions about transistors but was helpless when it came to designing something with them.

I remember wishing that I could just retake circuits even though I had passed. I felt at the time that I had to move on to the next class. A lot of electrical engineering went over my head because I was a little lacking on the fundamentals.

I’m reflecting on this now, because at the middle school level I often have students repeat a class. I’ve had students that have signed up for CS or Electronics 2 or 3 times. Does this ever happen in a high school? It can be a great experience for me and the kids. The benefits are different for every student.

Take James, for instance. James took Computer Science Exploration last spring, and signed up for it again this spring. Last year, we made projects in Unity and James made a little forest scene you could walk around. This year, James made an immersive Robot War game, with marching animated robots, a scoreboard, and rocket launchers. In one year the growth was incredible. It was clear James understood what he was doing much better than he had the year before. He enjoyed retaking the class and going farther with the material.

Kamiya took Electronics in 7th grade and then came to my classroom at the beginning of 2nd semester. She asked if she could be a TA during the spring, and I said yes. She continued to be a TA in Electronics for 2 consecutive semesters. She was interviewed about the class partway through her second time as a TA. She said she loved learning about electronics, and it was her passion. She never minded being in the same class over and over, because she learned something new every time. Things were taught in a slightly different way, with different projects. Kamiya came with me to conferences and presentations often. I knew if I asked her to present to our superintendent, or congressional representative, or at the ISTE conference, she would do a good job. Kamiya is a generally shy kid who really seemed to blossom when she was making things with technology. She went on to participate in a nationally-honored FIRST robotics team in high school, and I like hearing about what she’s up to.

Luis took Electronics for the first time and did reasonably well and got a B. I knew he probably didn’t understand the content solidly, but he did a decent job and passed. When he signed up for the class the second time, I offered him a choice and said he could either take the class as a student, to learn the material better, or he could take the class as a TA and help others. He chose to take the class as a TA. Even though he wasn’t a top-tier performer in the class the first time around, this was an option that worked for him. Patrick is shy and needed support when it came to friendships and bullying. Being a TA helped him learn more about electronics but mainly improve his status. He helped other students when he could and alerted me to their needs when he couldn’t. He told me that he felt the class was a safe haven for him, where he didn’t feel any academic or social pressure. I suppose he needed that more than he needed to know about Ohm’s law.

For James, Kamiya, and Luis, re-taking a class helped them to grow in ways they needed. I love that our school gives kids the option to sign up for a class a second time – no penalty, no pressure. If you want to learn a little more and in a slightly different way you can re-take a class and tailor the experience to meet your needs.

I wish I’d had that option in college with circuits class. Or I wish I had known about it and had taken it. I think it would have really helped me grow as an engineer to learn the same material again, with no pressure and no risk, just to make sure I understood it.

 

 

 

First Timer at SIGCSE 2017

I have been teaching computer science for 3 years now, and I’ve never actually had any training or PD on the pedagogy of computer science! I was thrilled when my friend Kristina Brown (twitter: @MsBrownTeachCS) told me she was able to round up some support and a little funding to go. Although I had to pay a little of my own way, I am really glad I got to attend! Here are some of the highlights of the sessions I went to. Many of the sessions were set up as a themed group – 20 or 25 minutes each, three presentations in a row. You could float between groups, but if you were interested in the theme it was easy to just stay and get information on three projects all at once. I liked the format of these sessions. Although the time frame seemed rushed for the presenters, I thought it was perfect for the audience. We were engaged the whole time, we got a short movement or stand-stretch break between each one, and we never got bored.

Novice Learners:

I went to a couple of sessions in this theme – one, presented by Shuchi Grover and Satabdi Basu, was about using formative assessments to identify misconceptions students had about CS concepts. Tobias Kohn led the next presentation on a related topic, beginners’ misconceptions about variables. When I taught math, I frequently got training on how to identify, question and correct common misconceptions of students – but this was the first time I’d had similar training in CS. Many of the misconceptions they talked about are ones I wrestle with when I teach middle schoolers:

  • Not understanding the assignment operator is different from the equality operator in math
  • Missing loop initialization
  • Grouping items in a loop incorrectly
  • Not understanding a variable’s value has been changed after an assignment operator
  • Not understanding a variable’s value can change during a loop’s execution
  • Confusing OR, AND boolean operators

I feel I understand better how to ask questions, use assessments and identify the misconceptions, but I think I will still struggle with how to correct them. I have many 7th and 8th graders who are still struggling with how to write a basic program that asks for input, does some math, and produces an output. I know some of the misconceptions above are to blame, and they can be devilish to fix.

Data Science for Kids:

I also went to a session on “Introducing Data Science to School Kids” by Shashank Srikant and Varun Aggarwal, and this was one of my favorites of the whole conference. I had been thinking for a long time that data science was a neglected area in beginner CS but I didn’t know how to teach it, so this gave me a great place to start. These researchers developed a lesson toolkit that tasks kids with developing an algorithm that can predict whether they’d want to be friends with someone, and testing the algorithm. It also covers data privacy and consent… really good, full lesson set. You can find it online here! http://www.datasciencekids.org/p/home-page.html

Gamification:

I enjoyed a session presented by Yin Pan, Sumita Mishra, and David Schwartz about “gamifying” a college-level course using an achievement map. I had been thinking I would love to have badging and an achievement map for my beginner classes. Their interface allows for creating assessments. http://forensic-games.csec.rit.edu/ I would have to consider if I want to put a lot of investment into something like this, but I love the idea.

BBC Micro:Bit

I went to a session led by Sue Sentance which was a report on how students enjoyed using the BBC Micro:Bit in a few locations where it was deployed. I’m really interested in this device and hope to purchase a set for next year. You can now pre-order them from Sparkfun and other retailers. The research showed students are really interested in this device, but teachers seemed to struggle with it for a number of reasons. The delivery was really late. Many teachers understood how to teach the basic lessons but struggled to connect larger concepts of computer science and physical computing. Teachers had a hard time making the time for the Micro:Bit due to a lack of training and the unpredictable timing of when they actually got the devices. These would need to be addressed in a successful implementation!

Cool Tools

I went to several sessions on blocks-based programming and encouraging diversity in computing, and in the process, discovered some new computing tools that can be used for content creation in a variety of formats!

Netsblox:  Found here http://editor.netsblox.org This tool uses SNAP!, a block-based language really similar to Scratch. The researchers have added some interesting blocks to SNAP to encourage distributed computing – remote procedure calls and messaging. Through these blocks, students can have users at different computers interact with each other. You can create multi-player games and also interact with NASA, Google maps, Twitter and more. I thought it was a really exciting idea. I would need to have better control over user accounts and “friends” lists in order to use this with young kids.

TurtleStitch: Found here http://www.turtlestitch.org/ A variant of SNAP! in which you can code a turtle to make an embroidery pattern and then upload the pattern to a professional embroidery machine. The presenters used the program at a STEM camp to encourage student self-expression. The students made their own personal logo and stitched it on a T-shirt! I tried to find embroidery machines that would work with the file formats in this program, but I can’t tell if a basic $400 machine would be able to actually stitch the patterns. I need to do a little more research to see if an embroidery machine would be a good addition to our makerspace.

Beetle Blocks: Found here http://beetleblocks.com/ you can program a “beetle” instead of a turtle. The beetle moves in 3-d space and can extrude filament behind it to create a 3-D model! You can export the 3-D model for use in a 3-D printer or in any other modeling tool such as Blender, Unity, or TinkerCad. I love this tool. I found some great examples by another CS teacher / blogger I follow, Laurel Pollard. She makes earrings with Beetle Blocks, among other cool things. I made a tower of hearts and 3-d printed it. I thought for my first project it wasn’t too bad!

Here’s the code: http://beetleblocks.com/run/#present:Username=msdupriest&ProjectName=heart%20tower

And here it is!

 

EarSketch: Making music with Python. Intriguing! I didn’t get a chance to play with it, but I’m interested. https://earsketch.gatech.edu/landing/#/

 

Jupyter Notebooks: This was presented as an interactive notebook in which you can do storytelling and coding, and it gives you a runtime environment for Python code. You can find it here: http://jupyter.org/ I would be really interested in this environment if it does what I think it does. I’m going to explore it this summer. I usually use OneNote as an interactive notebook, and I ask students to copy and paste their code there. How nice would it be to just be able to execute the code and keep notes all in one place?
There are example assignments and puzzles here. http://norvig.com/ipython/

Building Capacity and Professional Development:

I attended a number of sessions that touched on how to develop more CS teaching capacity. New Mexico started a program to train science teachers in NetLogo, and through a blend of online and in-person learning, recruited dozens of teachers to offer a new course integrating simulations and coding into science. Utah created a tiered certification program for teachers, allowing many teachers to offer CS at an entry point appropriate for them. The UK created a computing certificate for teachers that included online coursework, an individual coding project, and an action research component on CS pedagogy. I loved this model and thought it has a lot of potential for my own district.

I also got to attend a “birds of a feather” session on the K-12 CSTA standards, which are almost ready for full release. I like the standards overall. I notice that they represent a big philosophical change from what I am used to, which is the K-12 Common Core math standards. In order for someone to teach the CSTA standards well, they would have to offer a chance to create an involved capstone project. Many of the standards are something you *could* teach with a couple of lessons and a quiz, but students can’t truly demonstrate they learned the concept without actually creating a meaningful, authentic project that includes the idea. We talked about the need for examples and rubrics. What does mastery vs. proficiency look like at different grade bands? Those conversations will need to be hashed out, but the standards-writers could help us along with built-in rubrics where appropriate.

Networking with Friends

Finally it was awesome to meet up with several people I knew from online but hadn’t met in person. 🙂 Thanks to Sheena Vaidyanathan, Kim Wilkens, and Todd Lash, my Twitter #csk8 friends who sought me out and said hi! And Mike Zamansky, a fellow blogger and Tweeter. It was great to connect and share ideas. I also got to meet several of Kristina’s AP CS contacts from around the internet and it was great. Thanks to all of you for commiserating with me – this job is hard, and it often helps to know you share a lot of the same struggles.

I really enjoyed SIGCSE 2017 and I felt I came away with a lot of interesting tools to try, and new insights on computer science education. I hope I get to attend another CS education conference again sometime!

 

 

 

 

Achievement Mapping in OneNote

So I’ve been thinking a lot about competency-based education – the idea that learners should be able to progress through a flexible map of skills or concepts or dispositions, tracking progress and reflecting as they go, with as much choice as is reasonable on the timing and nature of the learning, on a time scale that’s right for them. Simple… right? I’m playing with some ways of piloting the idea in my classroom and I keep thinking about gaming in this process. Most video games have levels or achievements, and gamifying education is based on the inherent motivation built into video games. Every time you fail a level, you get to try again. You try until you succeed. Success metrics are clear, and when you succeed you go on to the next level. I like playing Minecraft with my kids, and we have fun finding our way through the Minecraft achievement map. The skills are really clear-cut and the achievements have to be done in order.

Anyone who plays Minecraft recognizes this map.

Anyone who plays Minecraft recognizes this map.

I wonder if I can apply the gamification principles to a class I teach. I’m experimenting with OneNote Class Notebook to push an achievement map out to my students. I need the map to be flexible – I don’t have it all written right now, and I’m not sure a competency map should be articulated completely from beginning to end. Do you want your child’s educational path pre-mapped from K through 12 or do you want them to be able to take unexpected turns as needed? I’d like to be able to push achievement challenges to the students as they come up, and maybe assign achievements flexibly depending on student choice and need.

I can push the achievements out as documents that contain a checklist, maybe a place to paste some code, and a reflection from the student. I can respond to their achievements and use this as the basis for conferencing with them about their learning.

For example, as my first two achievements for kids:

achievement1

achievement2

This semester, I wouldn’t use the achievement map as a grade, but I could leave the door open for it as an assessment tool in the future. How far would a student need to progress through the map to “pass” the class and move on to the next one? This is something I hope to answer after this semester.

I really wish I could create a clickable map like the Minecraft one, where you could hover over a box and it would tell you about the achievement, or click on the box to submit an entry to pass the achievement. When you passed one, the following achievements would be enabled. I know this is doable, but time and 217 students and so many preps and…. it’ll have to wait for a break, unless someone has created a tool like this and I just don’t know about it. Any badging or achievement-mapping tools out there that I should learn about?

What do you think? Have you ever gamified a graded class? What structures did you use and what should I fix before diving into this?

Reflecting on Reflecting

In my 6th grade tech class, called Web 2.0, my colleagues convinced me to include some keyboarding practice in the curriculum. It’s not a fun topic to teach, but it is a really important life skill and it’s not taught in any of the kids’ other core classes. One of my fellow tech teachers had a great idea to have students keep a spreadsheet of their keyboarding speeds throughout the quarter. The students take a 1-minute test every day and log their score in the spreadsheet. We use the sheet to teach students about using formulas, and it’s a good daily reflection tool on their growth.

We use NitroType and typing.com as tools for practice. NitroType is really engaging and I really like the drills on typing.com.

I have the students calculate their average speed (the average formula), their growth (using max, min, and subtraction), and how many times they got 25 words per minute or more (using the “countif” formula). A finished spreadsheet looks like this.

typing_speeds

Here’s what I find fascinating. I think teaching keyboarding is really boring. The online tools make it bearable. I put on my game face and practice with the students, and challenge them to race me to keep myself engaged in it. The students, however, LOVE it, and I think what they like about it is that they track their progress with a number. They know when they’ve improved. The goal is crystal clear and they can tell instantly if they’ve met it.

At the end of the quarter, I asked the students to reflect on whether they met either the goal I set for them (which was to gain 10WPM and be over 25WPM at least once), and whether they felt they had met their personal goal. These were some of their comments.

“I Met my score :)”

“I love TYPING”

“My goal was to increase by 10 words per minute. I started at 27 words per minute and slowly increased and got better until I got to 39 words per minute which was past my goal”

“My goal was to get to 35 WPM and I passed it by 10, I am really happy.”

“My goal was to get more accurate and more comfortable without looking at the keys. This I think I did improve on.”

“I improved so much!!!!!!!!”

“I think I’ve really improved with my keyboarding. I think I met my goal because I beat 25 by at least 20 and all of my scores were in the green. I will continue to practice keyboarding as I believe it will help me in the future. The time we had in class helped my improve and I fell like I’m 10 times faster than I was last year. Even if that is an exaggeration I really mean it when I say I got a lot better, so thank you for making me not only a better typer, but a better student as well.”

“I got to 25! That was very exiting because I am not that fast at typing! and I made my spread sheet very colorful!”

“I am proud of where I am with my typing and gained ten WPM”

 

Isn’t it interesting how motivating it is to have a clear goal and know immediately if you’ve met it or are improving? I see this every quarter. I wish I had a way to give students this instant satisfaction in classes in which progress is slower and proceeds over the course of a project. Learning coding can feel like this if you do activities like an Hour of Code, but what about learning in a creative problem-solving setting, where you have to investigate, discover, create, try and fail, iterate, gather data and perfect an actual product? Can I help students reflect on their day-to-day growth and their short-term goal setting as a motivational tool? I’m sure I can facilitate this by putting some good reflection tools in place. Let’s make this a New Year’s Resolution – I will help my students become motivated and reflective learners, and to track their own progress to make them feel the same sense of satisfaction my keyboarding students get.

End of Year Report for 2016

Hi everyone, sorry for the long silence on the blog. I don’t have any good excuses but would love to do better. Sometimes I have so many things going at once that if I think for an evening about what I want to write, everything is different the next day.

Here’s the report on how Fall 2016 went at Preston Middle School and beyond. It was quite a whirlwind!

August:

Before school even started, I traveled to Washington, DC for the Teacher Leadership Initiative Alumni Academy through the NEA. We did a lot of group brainstorming on some of the sticky issues of teacher leadership. The team really focused on what to expect under ESSA (the new law replacing No Child Left Behind, which puts a lot more power and flexibility in the hands of states), as well as early career teacher retention and mentorship. I did some targeted work with a small team on the student-discipline aspects of ESSA, which requires states and districts to track discipline data and disaggregate it by subgroup. Sharing stories, we realized our schools and districts still have much progress to make in this area. There’s ample evidence that suspensions and exclusionary practices result in worse educational outcomes and they’re applied unevenly when it comes to the students’ race or special education status. Yet many schools still practice them – here’s an area where our association needs to help educators take a stand on behalf of the kids.

I always enjoy working with my colleagues at the NEA, and I appreciate what they do for the 3 million of us (!!!) that are members.

My friends Laurie and Kim, from Massachusetts and Utah, were great sources of inspiration on this trip.

My friends Laurie and Kim, from Massachusetts and Utah, were great sources of inspiration on this trip.

 

And I saw a real blooming corpse flower at the National Botanic Garden while on a break.

And I saw a real blooming corpse flower at the National Botanic Garden while on a break.

Also in August, my family and I vacationed hard and had visits from friends right up until the day school started. It was a rush to get ready for the school year to start! Our building tech coordinator, Matt, and I also had to set up and plan for a year of working with our new VR makerspace. We had won a grant for it in the spring, and so we spent some time in the summer ordering equipment and getting the makerspace ready.

Everyone in the school staff wanted to try the new VR machine, including our head custodian.

Everyone in the school staff wanted to try the new VR machine, including our head custodian.

I taught five different classes this fall, and had over 200 students total – not too uncommon for a middle school elective teacher. Most of August is spent just getting things started – learning names, establishing your classroom norms, getting started with whatever it is you’re planning to do.

September:

All of my classes moved forward with learning content and working on projects – Scratch, Processing, Arduino, NAO robots, and Minecraft kept all of us busy. Toward the end of the month, I traveled to San Diego to work with Convergence on their Education Reimagined initiative. I represent a group with Poudre Education Association and Poudre School District at these events. Education Reimagined networks practitioners who are moving toward learner-centered education – a model in which schooling looks very different from what we think of as schools. In this model, education is driven by the needs of the learners instead of the needs of the system around it. The learners have choice, develop an individual map of competencies instead of progressing through grade levels, learn socially as not just students but as peers and teachers, and they learn in the context of the world they live in. These events involve very big thinking and it can be difficult to find the thing you’re going to change in your classroom Monday morning. You come back wanting to tear down the whole structure you work in, wanting to rebuild it based on the new paradigm. It’s hard to do work like this in short bursts and then come back to a traditional public middle school. I try my best to be learner-centered in the 90 minutes I have with all of my 200 students every other day, but of course there are limits to how far we can take it. If you’ve ever thought about the big structural changes you’d like to make to your own schooling environment, or if you’ve had some success making those changes, it would be wonderful to network with you.

Most of Poudre School District's Education Reimagined team. Oh the things we want to do to schooling!

Most of Poudre School District’s Education Reimagined team. Oh the things we want to do to schooling!

img_6515

The Colorado delegation at Education Reimagined. Thanks to Kerrie Dallman of CEA for bringing us together.

 

October:

I traveled to Providence, RI with my colleagues in the Allen Distinguished Educator program in the middle of the month. Sometimes I come back from a professional development experience thinking how far ahead my school is when it comes to innovative education. And other times I’m deeply humbled as I realize how much I could still grow. My meetings with the ADE’s always fall into this category. My colleagues have allowed their students to grow into true engineers and entrepreneurs, and they seem more energized the more they do. We visited the MET, a Big Picture Learning school in Providence, and we toured the entrepreneurship program and met some of the amazing students there. We also visited AS220, an arts school and also a residential art program that really focuses on students who have been in the correctional system.

The more I visit programs such as these and hear the stories of lives changed and inspired, the more ridiculous our current standards-based curricula and accountability systems seem.  The real work of changing lives requires more out of us – harder thinking from the adults as well as the kids in the system.

At the MET, we were introduced to student entrepreneurs running their own businesses. What a great way to be educated.

At the MET, Jodie Woodruff introduced us to student entrepreneurs running their own businesses. What a great way to be educated.

In addition, in October, we got a really interesting invitation from Colorado State University to attend a Virtual Reality symposium and hackathon as special guests. I hoped the students might be able to participate in the hackathon (some of the middle schoolers would have done really well), but that was not to be. But the symposium was great. Matt and I had 20 kids attend the symposium and another dozen come to visit the hackathon. I think anytime a student gets a chance to be in a university setting, talking about academic topics with the adults, it’s good for them. Some of the language was over their heads and the students described the experience as “sometimes boring but also interesting”. We never knew some of the ways VR could be used, and how exciting it could be if we were involved in the cutting edge of that kind of research. Everything from immunology to big data to civil engineering.

Matt and I infused the symposium experiences into class curriculum by including readings and videos for the kids about the future of VR, and by allowing kids to choose to work on semester projects in Unity that explored how VR can be used to make the world better.

Students trying the HTC Vive at the VR Symposium.

Students trying the HTC Vive at the VR Symposium.

Hearing from Colorado State University's VP of Research, Dr. Alan Rudolph, at the hackathon.

Hearing from Colorado State University’s VP of Research, Dr. Alan Rudolph, at the hackathon.

 

November:

In 2016, the Colorado State House passed a law requiring the CDE to develop standards for Computer Science, and allowing districts to opt into them. The bar is set low here, but the ceiling is high. At the very least, the initiative to develop standards gets educators talking about CS education and that’s worthy in itself. The effort to develop standards and get stakeholders together is just getting started. With a couple of my co-workers at the high school and district level, I attended a stakeholders’ meeting and standards input meeting in November. It was great to meet the folks in Colorado passionate about bringing computer science education to every kid. There are a lot of us, from diverse backgrounds, involved. Leaders from government, nonprofits, K-12 education, higher education, and private industry all had a lot in common. We believe computer science education is critical for the new workforce kids are expected to enter. We believe CS education should involve concepts and skills, but perhaps more importantly, creativity, problem-solving, and innovation. I loved that one message that came through was that we should exceed the expectations of the law. We don’t need to limit ourselves to high school and don’t need to set the expectation that CS is optional. We also believed that CS education should be accessible regardless of zip code or family background, and whether a student plans to attend college or not. We believe computing jobs should be available to high school graduates and we’d love to offer that track to learners.

I am excited about where these efforts are going next.

November 8th came and went. I volunteered throughout October and up until election day. I canvassed for our school district’s mill and bond, and I went out many weekends with the Larimer County Democrats for Hillary Clinton. Election day was hard. As an educator, all I want for my students is for them to think critically and be kind. The result of the presidential race felt like we have a long way to go, and it was disheartening. In the days following, I listened to the kids and just enjoyed being around their innocence and good spirits. Middle-schoolers sometimes bring their parents’ politics to class, but overall they are just interested in being kids, learning and having fun, and so we honored that and will continue to do so. We tried, and continue to try, to keep school safe and polite while also allowing students to discover their own voice and reason about what they believe. I will be flexing my own voice about policy and messaging in the coming months and years… while keeping my identity as an educator separate from my identity as an activist citizen. And this is the delicate balance we walk as educators. I would never deign to influence my students’ beliefs and yet I want them to know I believe in them and want the best for them.

December:

The critical time in December is Computer Science Education Week, the week of Dec. 5. The awesome staff at Preston agreed, for the third year in a row, to conduct an Hour of Code with the students at some point before winter break. Math teachers and science teachers carved out a little time to make it happen. The kids in my classes told me all about it and how fun it was. For my part, I had a few different items cooked up. I created a Minecraft Hour of Code using the ComputerCraftEDU mod, in which students program a turtle to mine and build for them. They love this Hour of Code and the kids asked to continue programming turtles afterward. For my Computer Science students, I wanted to empower them as CS ambassadors and advocates. I arranged a tour of elementary schools, and for four class periods, volunteer parent drivers shuttled my 7th and 8th graders to several other schools where my students taught an Hour of Code to kids from kindergarten to 5th grade. The CS students had to develop a lesson plan, with a learning objective, an opening, activity, and a way for kids to know if they had been successful. My students said this was their favorite part of the semester, and I heard from parents that their child would not stop talking about their elementary school visits at home! This was a devilishly challenging puzzle to work through, with the logistics and timing and paperwork, but it was very rewarding.

These 7th and 8th grade boys gave a robot demo and coding lesson to the 4th graders.

These 7th and 8th grade boys gave a robot demo and coding lesson to the 4th graders.

On the Wednesday of that week, we hosted the 2nd annual Preston code-a-thon. 160 students signed up for it, and we accepted 50 of them for the big day. The code-a-thon’s theme was “Hack the Holidays”. Students had about three hours to design and code a solution to a holiday-related problem. We got educational programs that taught about world religion, a robotic light-hanger, an app to help you with meal planning, a 3-D virtual reality holiday maze, a budget planner for gifts, a gift-delivery game, a few stories about helping the homeless, and many more. The event was a wonderful success and the kids had a great time coding with their friends for a morning. We hope to hold another one in February to accommodate the students who couldn’t get in the first time.

 

Students at the code-a-thon having snacks and working on their program in Scratch.

Students at the code-a-thon having snacks and working on their program in Scratch.

Finally in December, the VR and emerging technology enrichment class I taught with Matt came to a close for the semester – as did my other classes. We decided to host a Passion Project night in coordination with one of the GT English teachers, in which students could share their projects with their families. We had students create a few VR projects, including a skydiving app, a fear-of-heights simulator, and a virtual zoo. One student did an involved Arduino project, one student did a web design project, and another did research on how to build his own computer. We featured a couple of students in TED-style talks in front of the large crowd. The young man who created an Arduino-based distance sensor and the young lady who created the VR fear-of-heights app demonstrated their projects in front of a crowd. It was a fun way to put a cap on a very good semester.

This student was inspired by VR apps that can help people, and wanted her sister to conquer her fear of heights using VR.

This student was inspired by VR apps that can help people, and wanted her sister to conquer her fear of heights using VR.

 

This young man's distance sensor was a fun engineering project for him.

This young man’s distance sensor was a fun engineering project for him.

 

I’ll try to blog a little more consistently this semester instead of writing about EVERYTHING right at the very end. I’ve enjoyed communicating with those of you I meet on Twitter and social media, so please reach out if you’d like to share thoughts or plans on anything.

 

The Realities of Bringing Virtual Reality (VR) to the Classroom

I wrote a blog for the Allen Distinguished Educators about my school’s experience starting a VR program in a middle school.

 

Realities of Bringing VR to the Classroom: ADE Blog

I have found quite a few articles lately about how VR can be helpful and life-changing for those that use it. VR can change your behavior and decision-making. VR can ease the pain of hospital patients, including children with sickle-cell disease as well as burn victims and other patients in pain. I think these ideas will really appeal to kids and empower them to think about what they could create in VR that involves the engineering process.

We’re excited for this program to gain traction this year!

Beginning of the year in CS and Electronics!

I’m now a couple of weeks into the 2016-2017 school year, and I really think things are off to a good start. This year marks a bittersweet milestone for me. This will be my ninth year teaching. I was a software engineer for nine years. After this year, I’ll have been teaching longer than I was an engineer. I guess this is my real job now!

I have three regular-length classes I teach this year, and they’re pretty much the same as last semester: Web 2.0 (our required quarter-long 6th grade tech class), Computer Science Explorations, and Electronics (both of these are semester-long electives for 7th and 8th graders).

I’ll also teach a couple of enrichment classes, for a shorter time and for no grades. I’ll blog about those once they get started!

In Web 2.0, I start the semester right away by introducing Scratch. It provides much more than just coding at the beginning. Students learn about data privacy as we talk about creating a login and password, and facilitate the discussion with their parents so they can get their accounts confirmed. We go over the Scratch community guidelines and talk about what it means to be a good internet citizen.

We dive into coding by exploring the “motion” and “looks” blocks and having students write a story. Sixth graders have a funny and strange sense of humor and I always get quirky programs from them, including things like farting, flying hippos and a purple Morgan Freeman in front of a black hole.

A sixth-grader's imagination, in Scratch.

A sixth-grader’s imagination, in Scratch.

"Did you code a farting hippo?" "Yes I did!"

“Did you code a farting hippo?” “Yes I did!”

As we get into more challenging aspects of coding, we’ll continue to spiral back to the community guidelines, and we’ll learn about proper commenting, remixing, reusing and giving credit.

For the Computer Science Exploration class, we’re starting with coding right away in Processing. After doing some basic lessons on the coordinate plane, we learn about shape and color commands, and the students have to plan and create a free-draw program. I’ve blogged about this assignment before and enjoyed it this time around as well. Here’s some of the work from the kids.

Pixel art in Processing.

Pixel art in Processing.

This student imagined a solar system model in Processing.

This student imagined a solar system model in Processing.

And in Electronics, my teaching partner, Tracey Winey, and I decided to start the semester with circuits and Arduino, and then in the second quarter we will explore the engineering design process with sustainable lights in Engineering Brightness. I love our Arduino program and the kids have so much fun with it. So far they’ve all been able to make multiple lights blink and they are just so happy when they make it all work. Coding is fun, but coding when you’re interacting with something in the real world is extremely rewarding – we are having literal light-bulb moments.

The Allen Distinguished Educator program and LearnBig worked with us to develop a DIY guide on the Arduino light-up music boxes, and we actually had our kids use the professional video to work on their first project. They enjoyed it and said the videos were very helpful.

Students show Mrs. Winey their blinking lights.

Students show Mrs. Winey their blinking lights.

We asked the students to write reflections on Google Classroom about the blinking-light activity and their comments were gushing with positivity.
“i really was confused at first but now i get it and it is very fun!”

“I learned how to code, because I didn’t know how to code before. I really liked just the learning aspect of it because I have always wanted to code and I finally learned how to.”

“I learned how to use Arduino. I liked that I actually can make this board light up. it just felt nice.”

“I learned that it really isn’t that hard to program and arduino, and I really liked this! I just know I am going to have a lot of fun with these! Thank you so much for the opportunity!”

“I learned that this is a awesome class and that there was a lot of cool and hard steps to get to where i am i would have to say that i dont just like but love this class”

Wow, so many feels! I love being able to come back to those later in the year and reminding the students how far they’ve come and what they have learned!

As a final note, the number of girls taking CS and Electronics has slowly crept upward, although the numbers aren’t what I hoped they would be, and they probably never will be as long as learning computer programming / computing is considered optional. I have 4 girls in Electronics, and 12 total in my two sections of CS. It’s better than my first year when I would have one girl and 30 boys in a programming class, but we continue to be part of the problem when it comes to inequitable access to learning programming. The ability to program a computer won’t get less important as these kids graduate, and I wish for all of them to be able to participate in the world as inventors and creators.

I had my CS students do a little activity about their perception of programmers, and I’ll blog about that next time!

 

 

 

 

The Allen Distinguished Educator program and grants

In February, my teaching partner Tracey Winey and I received the Allen Distinguished Educator award. I want to tell you a little about the program as there are some possible ways for you to get involved! (Hint – there’s money available!)

The program was spearheaded by Paul Allen, and it seeks to highlight and further the spread of innovative education programs in computer science, engineering, and entrepreneurship. The program looks for teachers who are “breaking the mold” in these areas, re-imagining what education looks like in a variety of school settings. There are ADE awardees who teach all grade levels, from large and small schools, from charter, private, and public schools. What we have in common is that we believe in students’ ability to be creative problem solvers – we believe in individualized, project-based learning – we believe a 21st century education is not just about modern tools but allowing those tools to be used powerfully. We’ve created programs that look at learning in different and exciting ways. The ADE community helps us share our work and network with each other and with you.

IMG_5185

Video of the ADE class of 2016 at SxSWEdu

Tracey is the media specialist at our middle school, and I’m the computer science and electronics teacher. She has taken the lead at turning our school’s media center into a social hub and makerspace, filling it with engaging technology, a creative spirit, a sense of adventure. I have worked hard to grow the computer science and engineering program at our school, to make programming just another creation tool we use to solve problems and to make engineering part of the everyday culture. We have our separate sandboxes but  we work together on an Electronics class and program called Engineering Brightness. We share a lot more about this program and what we’ve learned from it on the ADE website.

On the ADE website, you’ll find Micro-documentaries, Roadmaps, and Do-It-Yourself guides. A team from the Allen Distinguished Educators program, including a video production team from LearnBig, an e-learning company, came to our school and spent three days with us creating these products. It was exciting for me – my first time working with a professional team of videographers and writers. They listened to our stories and inspected our lesson and unit plans, and turned them into video products I’m really proud of and excited to share. It’s interesting to see an outside perspective of myself as an educator. It’s not the whole story of me and Tracey, but I like the story they told.

IMG_5583

Making the DIY guide with the video crew from LearnBig. They do wonderful work.

I’m not a perfect educator or person. Going through the process of documenting and videoing my life as a teacher has laid bare the areas where I want to improve as well as my strengths. I’m really humbled to be in the company of the other ADE’s and suffer from imposter sydrome as much as the next person. I am, however, firmly committed to honoring my students as creative people with an interest in exploring the world around them, playing and solving problems, and I’m committed to learning alongside them – I stay grounded in that philosophy.

You can get involved in the Allen Distinguished Educator program! The grant application period just started for the DIY grants. These grants will award $1000 for you to implement one of the DIY guides on the web site. Tracey and I created the DIY guide about making Arduino-based music boxes with middle schoolers. $1000 would be enough to get a class set of Arduinos so you can get involved in physical computer science! I hope you apply for a project that is suited for you. All of them are rigorous and interesting and innovative for the students and teacher.

Let me know if I can do anything to help you with a grant proposal! And if you’re interested in joining the next class of ADE’s, watch the web site for application information this fall.